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Recently several authors have studied the Induced Matter Theory (IMT).1,7,9 The

IMT is based on the Kaluza–Klein idea3,4 and postulates that the vacuum five-

dimensional Einstein field equations give rise to a four-dimensional theory with

matter sources, and hence gives a prescription for a possible geometrical origin for

matter. The IMT has recently received some theoretical support in that it was

proven that any analytic n-dimensional Riemannian space can be locally embedded

in an (n+1)-dimensional Ricci-flat space,6 so that all general relativistic space–times

can be locally embedded in a five-dimensional Ricci-flat space–time.

In the IMT, four-dimensional space–time is locally and isometrically embedded

in a five-dimensional vacuum space–time. Writing

ds2 = gab dx
a dxb = gαβ dx

α dxβ + φ2 dη2 (1)

(a, b = 0, 1, 2, 3, 4; α, β = 0, 1, 2, 3; η = x4), the five-dimensional vacuum field

equations are
(5)Rab = 0 . (2)

The equations can then be written as

(4)Rαβ = φ−1φ;αβ −
1

2
φ−2

{
φ−1φ∗g∗αβ − g∗∗αβ + gλµg∗αλg

∗
βµ −

1

2
gµνg∗µνg

∗
αβ

}
, (3)

where (4)Rαβ is the four-dimensional Ricci tensor constructed from gαβ and “ ∗ ”

denotes differentiation with respect to η. Hence we have that general relativity is

embedded in the hypersurface Σ4 where η = η0 = constant with metric gαβ and

energy momentum tensor Tαβ defined by

Tαβ = (4)Rαβ −
1

2
(4)Rgαβ . (4)

[The equations (5)R4α = 0 = (5)R44 represent constraints (on, for example, φ)].

Consequently, the matter content of the four-dimensional universe is geometrical in

nature.
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In addition, it has been postulated2 that freely-falling test particles follow

geodesics in the five-dimensional (vacuum) space–time. This postulate is an ad-

ditional assumption in IMT and is different in nature from the other postulates

described above. Indeed, IMT is a self-consistent theory independent of this addi-

tional assumption.

Moreover, the (four-dimensional) Bianchi identities are automatically satisfied

in the intrinsic four-dimensional hypersurfaces Σ4, and consequently the (four-

dimensional) energy momentum tensor is conserved, i.e.

Tαβ;γg
βγ = 0 , (5)

where the semicolon denotes covariant differentiation with respect to gαβ. Hence,

the motion of the matter in the hypersurfaces Σ4 is constrained by (5). In par-

ticular, if the four-dimensional matter is (pressure-free) dust, then Eq. (5) implies

that the dust particles follow (four-dimensional) geodesics in Σ4. Presumably, if

the additional five-dimensional geodesy assumption is to be consistent, in the case

of dust these four-dimensional geodesics must be related to the geodesics in five

dimensions (at least on Σ4).

To examine the assumption of five-dimensional geodesy, let us consider the cos-

mological solutions of Ponce de Leon5 in which the metric is given by

ds2 = −η2 dt2 + t2/αη2/(1−α)(dx2 + dy2 + dz2) +
α2

(1− α)2
t2 dη2 , (6)

where the parameter α > 0 (6= 1). In the IMT, (6) describes a class of perfect fluids

in the hypersurfaces Σ4 (η = η0) with the equation of state p = µ(2α− 3)/3, where

p is the pressure and µ is the energy density of the fluid. Clearly, when α = 3/2

this is the equation of state for dust (p = 0).

Based on (6), the five-dimensional geodesic equations read

ẍ = −2

(
ṫ

αt
+

η̇

(1− α)η

)
ẋ , (similarly for y and z) (7)

ẗ = − 1

α

t2/αη2/(1−α)

η2

(
ẋ2 + ẏ2 + ż2

)
− 2

ṫη̇

η
− α2

(1− α)2

t

η2
η̇2 , (8)

η̈ =
(1− α)

α

t2/αη2/(1−α)

t2
(
ẋ2 + ẏ2 + ż2

)
− 2

ṫη̇

t
− (1− α)2

α2

η

t2
ṫ2 , (9)

where “ · ” ≡ d/ds denotes differentiation with respect to the five-dimensional affine

parameter. In order for a particle to remain on an η = η0 hypersurface (Σ4),

η̇ = η̈ = 0 is required on Σ4. Using this in (9), one obtains

ṫ2 =
1

(1− α)
t2/αη

2α/(1−α)
0 (ẋ2 + ẏ2 + ż2) . (10)
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However, this expression does not satisfy (8) (using (7)). Therefore, should “test”

particles travel along five-dimensional geodesics, they cannot remain on the hy-

persurface η = η0 and consequently they cannot travel along the four-dimensional

geodesic curves.

As an example to further illustrate this lack of four-dimensional geodesy, let

us examine the dust solution (p = 0; i.e. α = 3/2), where Eq. (5) indicates that

the (four-dimensional) fluid velocities are geodesic. Let us then investigate whether

the five-dimensional geodesic equations can reduce to the four-dimensional geodesic

equations by expressing the four-dimensional components of the five-dimensional

geodesic equations,

d(5)uα

ds
+ (5)Γαbc

(5)ub(5)uc = 0 , (11)

(where (5)ua ≡ dxa/ds) in terms of their four-dimensional counterparts10

d(4)uα

dλ
+ (4)Γαβγ

(4)uβ(4)uγ =
−B2

(1 +B2/φ2)φ3

[
φ;α +

(
φ

B

dB

dλ
− dφ

dλ

)
(4)uα

]
− gαβg∗βγ(4)uγ

dη

dλ
, (12)

where B ≡ −φ2dη/dλ, (4)uα ≡ dxα/dλ, and λ is the four-dimensional affine param-

eter (dλ2 = gαβ dx
α dxβ). If (4)uα are geodesic, then the right-hand side of (12)

vanishes.

Using the velocities (see Ref. 8 with α = 3/2)

(5)u0 =
∓3

2
√

2η
, (5)ul = 0 (l = 1–3) , (5)u4 =

±1

6
√

2t
, (13)

which satisfy (11), we find that (12) becomes

d(4)u0

dλ
=

1

9tη2
, (14)

d(4)ul

dλ
= 0 (l = 1–3) . (15)

Furthermore, the coordinates t and η can be explicitly expressed in terms of λ:

t =

[
∓ 8

9C
λ+ k

]9/8

, (16)

η = C

[
∓ 8

9C
λ+ k

]−1/8

, (17)

(C and k are integration constants).
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Concluding Remarks

If the four-dimensional velocities are geodesic, then t ∝ λ. Both Eqs. (14) and (16)

suggest that dust particles following a five-dimensional geodesic cannot follow four-

dimensional geodesics. However, in a sense, the right-hand side of (14) becomes

negligible at “late times”.8 In addition, it is apparent that particles following a five-

dimensional geodesic cannot remain on hypersurfaces η = η0, as demonstrated from

Eqs. (7)–(10) and (17) in the case of dust. Therefore, it would seem that the five-

dimensional geodesy postulate in the formalism of IMT needs further consideration.

References

1. A. A. Coley, Ap. J. 427, 585 (1994).
2. D. Kalligas, P. S. Wesson and C. W. F. Everitt, Ap. J. 439, 548 (1995).
3. T. Kaluza, Sitzungsber, Press. Akad. Wiss. Phys. Math. K1, 966 (1921).
4. O. Klein, Z. Phys. 37, 895 (1926).
5. J. Ponce de Leon, Gen. Rel. Grav. 20, 539 (1988).
6. C. Romero, R. Tavakol and R. Zalaletdinov, Gen. Rel. Grav. 28, 365 (1996).
7. P. S. Wesson, Ap. J. 394, 19 (1992).
8. P. S. Wesson and H. Liu, Ap. J. 440, 1 (1995).
9. P. S. Wesson and J. Ponce de Leon, J. Math. Phys. 33, 3883 (1992).

10. P. S. Wesson and J. Ponce de Leon, J. Astron. Astro. 294, 1 (1995).


